On Constructing Orthogonal Idempotents
نویسندگان
چکیده
منابع مشابه
Primitive orthogonal idempotents for R-trivial monoids
We construct a recursive formula for a complete system of primitive orthogonal idempotents for any Rtrivial monoid. This uses the newly proved equivalence between the notions of R-trivial monoid and weakly ordered monoid. Résumé. Nous construisons une formule récursive pour un système complet d’idempotents orthogonaux primitifs pour tout monoı̈de R-trivial. Nous employons une nouvelle équivalenc...
متن کاملOrthogonal Idempotents in the Descent Algebra of Bn and Applications
We begin by briefly recalling some of our previous results on the descent algebra of the hyperoctahedral groups Bn. From this we construct a “nice” expression for the generating function of a family of orthogonal idempotents ρkn. More precisely ∑n k=1 ρknx = 1 2nn! ∑ π∈Bn (x−2d(π))↑ Bn π, where d(π) stands for the number of descents of π and (x)↑ Bn =(x+1)(x+3)(x+5)···(x+2n−1). We show that the...
متن کاملAn algebra generated by two sets of mutually orthogonal idempotents
For a field F and an integer d ≥ 1, we consider the universal associative F-algebra A generated by two sets of d+1 mutually orthogonal idempotents. We display four bases for the F-vector space A that we find attractive. We determine how these bases are related to each other. We describe how the multiplication in A looks with respect to our bases. Using our bases we obtain an infinite nested seq...
متن کاملConstructing Orthogonal de Bruijn Sequences
A (σ, k)-de Bruijn sequence is a minimum length string on an alphabet set of size σ which contains all σ k-mers exactly once. Motivated by an application in synthetic biology, we say a given collection of de Bruijn sequences are orthogonal if no two of them contain the same (k + 1)-mer; that is, the length of their longest common substring is k. In this paper, we show how to construct large col...
متن کاملOn a Grouping Method for Constructing Mixed Orthogonal Arrays
Mixed orthogonal arrays of strength two and size s are constructed by grouping points in the finite projective geometry . can be partitioned into 1, PG mn s 1, PG mn s 1 1 mn n s s –1 n -flats such that each –1 n flat is associated with a point in . An orthogonal array 1, n PG m s 1 1 mn n mn s s n s L s can be constructed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2007
ISSN: 0035-7596
DOI: 10.1216/rmjm/1187453111